
Searching for proofs (and uncovering
capacities of the mathematical mind)1

Wilfried Sieg

Abstract. What is it that shapes mathematical arguments into proofs that are
intelligible to us, and what is it that allows us to find proofs efficiently? — This
is the informal question I intend to address by investigating, on the one hand, the
abstract ways of the axiomatic method in modern mathematics and, on the other
hand, the concrete ways of proof construction suggested by modern proof theory.
These theoretical investigations are complemented by experimentation with the proof
search algorithm AProS. It searches for natural deduction proofs in pure logic; it can
be extended directly to cover elementary parts of set theory and to find abstract proofs
of Gödel’s incompleteness theorems. The subtle interaction between understanding
and reasoning, i.e., between introducing concepts and proving theorems, is crucial. It
suggests principles for structuring proofs conceptually and brings out the dynamic role
of leading ideas. Hilbert’s work provides a perspective that allows us to weave these
strands into a fascinating intellectual fabric and to connect, in novel and surprising
ways, classical themes with deep contemporary problems. The connections reach from
proof theory through computer science and cognitive psychology to the philosophy of
mathematics and all the way back.

1 Historical perspective

It is definitely counter to the standard view of Hilbert’s formalist perspective
on mathematics that I associate his work with uncovering aspects of the math-
ematical mind; I hope you will see that he played indeed a pivotal role. He was
deeply influenced by Dedekind and Kronecker; he connected these extraordi-
nary mathematicians of the 19th century to two equally remarkable logicians
of the 20th century, Gödel and Turing. The character of that connection is
determined by Hilbert’s focus on the axiomatic method and the associated
consistency problem. What a remarkable path it is: emerging from the radical
transformation of mathematics in the second half of the 19th century and lead-
ing to the dramatic development of metamathematics in the second half of the
20th century.

Examining that path allows us to appreciate Hilbert’s perspective on the
wide-open mathematical landscape. It also enriches our perspective on his

1This essay is dedicated to Grigori Mints on the occasion of his 70th birthday. Over
the course of many years we have been discussing the fruitfulness of searching directly for
natural deduction proofs. He and his Russian colleagues took already in 1965 a systematic and
important step for propositional logic; see the co-authored paper (Shanin, et al. 1965), but
also (Mints 1969) and the description of further work in (Maslov, Mints, and Orevkov 1983).
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metamathematical work.1 Some of Hilbert’s considerations are, however, not
well integrated into contemporary investigations. In particular, the cognitive
side of proof theory has been neglected, and I intend to pursue it in this essay. It
was most strongly, but perhaps somewhat misleadingly, expressed in Hilbert’s
Hamburg talk of 1927. He starts with a general remark about the “formula
game” criticized by Brouwer:

The formula game . . . has, besides its mathematical value, an important general
philosophical significance. For this formula game is carried out according to certain
definite rules, in which the technique of our thinking is expressed. These rules form
a closed system that can be discovered and definitively stated.

Then he continues with a provocative statement about the cognitive goal of
proof theoretic investigations.

The fundamental idea of my proof theory is none other than to describe the activity
of our understanding, to make a protocol of the rules according to which our thinking
actually proceeds.2

It is clear to us, and it was clear to Hilbert, that mathematical thinking does not
proceed in the strictly regimented ways imposed by an austere formal theory.
Though formal rigor is crucial, it is not sufficient to shape proofs intelligibly
or to discover them efficiently, even in pure logic. Recalling the principle that
mathematics should solve problems “by a minimum of blind calculation and a
maximum of guiding thought”, I will investigate the subtle interaction between
understanding and reasoning, i.e., between introducing concepts and proving
theorems. That suggests principles for structuring proofs conceptually and
brings out the dynamic role of leading ideas.3

1In spite of the demise of the finitist program, proof theoretic work has been contin-
ued successfully along at least two dimensions. There is, first of all, the ever more refined
formalization of mathematics with the novel mathematical end of extracting information
from proofs. Formalizing mathematics was originally viewed as the basis for a mathemati-
cal treatment of foundational problems and, in particular, for obtaining consistency results.
Gödel’s theorems shifted the focus from absolute finitist to relative consistency proofs with
the philosophical end of comparing foundational frameworks; that is the second dimension
of continuing proof theoretic work. These two dimensions are represented by “proof min-
ing” initiated by Kreisel and “reductive proof theory” pursued since Gödel and Gentzen’s
consistency proof of classical relative to intuitionistic number theory.

2(Hilbert 1927) in (van Heijenoort 1967, p. 475).
3The way in which I am pursuing matters is programmatically related to Wang’s per-

spective in his (1970). In that paper Wang discusses, on p. 106, “the project of mechanizing
mathematical arguments”. The results that have been obtained so far, Wang asserts, are
only “theoretical” ones, “which do not establish the strong conclusion that mathematical
reasoning (or even a major part of it) is mechanical in nature”. But the unestablished strong
conclusion challenges us to address in novel ways “the perennial problem about mind and
machine” — by dealing with mathematical activity in a systematic way. Wang continues:
“Even though what is demanded is not mechanical simulation, the task requires a close ex-
amination of how mathematics is done in order to determine how informal methods can be
replaced by mechanizable procedures and how the speed of computers can be employed to
compensate for their inflexibility. The field is wide open, and like all good things, it is not
easy. But one does expect and look for pleasant surprises in this enterprise which requires
a novel combination of psychology, logic, mathematics and computer technology.” Surpris-
ingly, there is still no unified interdisciplinary approach; but see Appendix C below with the
title “Confluence?”.
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In some sense, the development toward proof theory began in late 1917
when Hilbert gave a talk in Zürich, entitled Axiomatisches Denken. The talk
was deeply rooted in the past and pointed decisively to the future. Hilbert
suggested, in particular,

. . . we must — that is my conviction — take the concept of the specifically math-
ematical proof as an object of investigation, just as the astronomer has to consider
the movement of his position, the physicist must study the theory of his apparatus,
and the philosopher criticizes reason itself.

Hilbert recognized, in the very next sentence, that “the execution of this pro-
gram is at present, to be sure, still an unsolved problem”. Ironically, solving
this problem was just a step in solving the most pressing issue with modern
abstract mathematics as it had emerged in the second half of the 19th cen-
tury. This development of mathematics is complemented by and connected to
the dramatic expansion of logic facilitating steps toward full formalization.4

Hilbert clearly hoped to address the issue he had already articulated in his
Paris address of 1900 and had stated prominently as the second in his famous
list of problems:

. . . I wish to designate the following as the most important among the numerous
questions which can be asked with regard to the axioms [of arithmetic]: To prove that
they are not contradictory, that is, that a finite number of logical steps based upon
them can never lead to contradictory results.

As to the axioms of arithmetic, Hilbert points to his paper Über den Zahlbegriff
delivered at the Munich meeting of the German Association of Mathematicians
in September of 1899. The title alone indicates already its intellectual context:
twelve years earlier, Kronecker had published a well-known paper with the very
same title and had sketched a way of introducing irrational numbers without
accepting the general notion. It is precisely to the general concept that Hilbert
wants to give a proper foundation — using the axiomatic method and follow-
ing Dedekind who represents most strikingly the development toward greater
abstractness in mathematics.

2 Abstract concepts

Howard Stein analyzed philosophical aspects of the 19th century expansion and
transformation of mathematics I just alluded to.5 Underlying these develop-

4The deepest philosophical connection between the mathematical and logical develop-
ments is indicated by the fact that both Dedekind and Frege considered the concept of a
“function” to be central; it is a dramatic break from traditional metaphysics. Cf. Cassirer’s
Substanzbegriff und Funktionsbegriff.

5Stein did so in his marvelous paper (Stein 1988). The key words of its title (logos,
logic, and logistiké) structure the systematic progression of my essay that was presented
as the Howard Stein Lecture at the University of Chicago on 15 May 2008; Part 2 is a
discussion of logos, Part 3 of logic, and Part 4 of logistiké. Improved versions of that talk
were presented on 8 October 2008 to a workshop on “Mathematics between the Natural
Sciences and the Humanities” held in Göttingen, on 28 December 2008 to the Symposium
on “Hilbert’s Place in the Foundations and Philosophy of Mathematics” at the meeting of
the American Philosophical Association in Philadelphia, on 27 February 2009 in the series
“Formal Methods in the Humanities” at Stanford University, and on 16 April 2009 to the
conference on “The Fundamental Idea of Proof Theory” in Paris. I am grateful to many
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ments is for him the rediscovery of a capacity of the human mind that had been
first discovered by the Greeks between the 6th and 4th century B.C.:

The expansion [of mathematics in the 19th century] was effected by the very same
capacity of thought that the Greeks discovered; but in the process, something new
was learned about the nature of that capacity — what it is, and what it is not. I
believe that what has been learned, when properly understood, constitutes one of the
greatest advances in philosophy — although it, too, like the advance in mathematics
itself, has a close relation to ancient ideas.6

The deep connections and striking differences between the two discoveries can
be examined by comparing Eudoxos’s theory of proportion with Dedekind’s and
Hilbert’s theory of real numbers. Fundamental for articulating this difference
is Dedekind’s notion of system that is also used by Hilbert.

2.1 Systems

When discussing Kronecker’s demand that proofs be constructive and that
notions be decidable, Stein writes:

I think the issue concerns definitions rather more crucially than proofs; but let me
say, borrowing a usage from Plato, that it concerns the mathematical logos, in the
sense both of ‘discourse’ generally, and of definition — i.e., the formation of concepts
— in particular. (p. 251)

Logos refers to definitions not only as abbreviatory devices, but also as pro-
viding a frame for discourse, here the discourse concerning irrational numbers.
Indeed, the frame is provided by a structural definition that concerns systems
and that imposes relations between their elements. This methodological per-
spective shapes Dedekind’s mathematical and foundational work, and Hilbert
clearly stands in this Dedekindian tradition. The structural definitions of Eu-
clidean space in Hilbert’s (1899a) and of real numbers in his (1900b) start out
with, We think three systems of things. . . , respectively with We think a system
of things; we call these things numbers and denote them by a, b, c . . . We think
these numbers in certain mutual relations, the precise and complete description
of which is given by the following axioms: . . . 7 The last sentence is followed by
the conditions characterizing real numbers, i.e., those of Dedekind’s (1872c),
except that continuity is postulated in a different, though deeply related way
(see below). Hilbert and Bernays called this way of giving a structural defini-
tion, or formulating a mathematical theory, existential axiomatics.

remarks from the various audiences. The final version of this essay was influenced by very
helpful comments from two anonymous referees and Sol Feferman. — Dawn McLaughlin
prepared the LATEX version of this document; many thanks to her for her meticulous attention
to detail.

6(Stein 1988, pp. 238–239). Stein continues: “I also believe that, when properly under-
stood, this philosophical advance should conduce to a certain modesty: one of the things we
should have learned in the course of it is how much we do not yet understand about the
nature of mathematics.” — I could not agree more.

7The German texts are: “Wir denken drei Systeme von Dingen . . . , respectively Wir
denken ein System von Dingen; wir nennen diese Dinge Zahlen und bezeichnen sie mit a,
b, c . . . Wir denken diese Zahlen in gewissen gegenseitigen Beziehungen, deren genaue und
vollständige Beschreibung durch die folgenden Axiome geschieht: . . . ”
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The introduction of concepts “rendered necessary by the frequent recurrence
of complex phenomena, which could be controlled only with difficulty by the
old ones” is praised by Dedekind as the engine of progress in mathematics and
other sciences.8 The definition of continuity or completeness in his (1872c) is
to be viewed in this light. The underlying complex phenomena are related to
orderings. Dedekind emphasizes transitivity and density as central properties
of an ordered system O, and adds the feature that every element in O generates
a cut; a cut of O is simply a partition of O into two non-empty parts A and
B, such that all the elements of A are smaller than all the elements of B. Two
different interpretations are presented for these principles, namely, the rational
numbers with the ordinary less-than relation and the geometric line with the
to-the-right-of relation. On account of this fact the ordering phenomena for the
rationals and the geometric line are viewed as analogous. Finally, the continuity
principle is the converse of the last condition: every cut of the ordered system
is produced by exactly one element. For Dedekind this principle expresses the
essence of continuity and holds for the geometric line.9

In order to capture continuity arithmetically and to define a system of real
numbers, Dedekind turns the analogy between the rationals and the geometric
line into a real correspondence by embedding the rationals into the line (after
having fixed an origin and a unit). This makes clear that the system of rationals
is not continuous, and it motivates considering cuts of rationals as arithmetic
counterparts to geometric points. Dedekind shows the system of these cuts
to be an ordered field that is also continuous or complete.10 The complete-
ness of the system, its non-extendibility, points to the core of the difference
with Eudoxos’s definition of proportionality in Book V of Euclid’s Elements.
The ancient definition applies to many different kinds of geometric magnitudes
without requiring that their respective systems be complete, as they may be
open to new geometric constructions. Hilbert’s completeness axiom expresses
the condition of non-extendibility most directly as part of the structural defi-
nition. As a matter of fact, even in his (1922) Hilbert articulates Dedekind’s
structural way of thinking of the system of real numbers when describing the
axiomatische Begründungsmethode for analysis (that is done still before finitist
proof theory is given its proper methodological articulation in 1922):

The continuum of real numbers is a system of things, which are linked to one another
by determinate relations, the so-called axioms. In particular, in place of the definition
of real numbers by Dedekind cuts, we have the two axioms of continuity, namely, the

8(Dedekind 1888, p. VI).
9Dedekind remarks on p. 11 of (1872c): “Die Annahme dieser Eigenschaft der Linie ist

nichts als ein Axiom, durch welches wir erst der Linie ihre Stetigkeit zuerkennen, durch
welches wir die Stetigkeit in die Linie hineindenken.” Then he continues that the “really
existent” space may or may not be continuous and that — even if it were not continuous
— we could make it continuous in thought. On p. VII of (1888) he discusses a model for
Euclid’s Elements that is everywhere discontinuous.

10My interpretation of these considerations reflects Dedekind’s methodological practice
that is tangible in (1872c) and perfectly explicit five years later in his (1877) — with reference
back to (1872c). Thus, Noether attributed the “axiomatische Auffassung” to Dedekind in
her comments on (1872c). Notice that Dedekind does not identify real numbers with cuts
of rationals; real numbers are associated with or determined by cuts, but are viewed as new
objects. That is vigorously expressed in letters to Lipschitz.
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Archimedean axiom and the so-called completeness axiom. To be sure, Dedekind cuts
can then also be used to specify individual real numbers, but they do not provide the
definition of the concept of real number. Rather, a real number is conceptually just
a thing belonging to our system. . . .

This standpoint is logically completely unobjectionable, and the only thing that
remains to be decided is, whether a system of the requisite sort is thinkable, that is,
whether the axioms do not, say, lead to a contradiction.11

The axioms serve, of course, also as starting-points for the systematic devel-
opment of analysis; consistency is to ensure that not too much can be proved,
namely, everything. This is one of the crucially important connections to prov-
ability. Dedekind also points repeatedly and polemically to the fact that we
have finally a proof of
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√

6 and indicates how analysis can be devel-
oped; he shows the continuity principle to be equivalent to the basic analytic
fact that bounded, monotonically increasing functions have a limit. That is
methodology par excellence: The continuity principle is not only sufficient to
prove the analytic fact, but indeed necessary.

2.2 Consistency

For both Dedekind and Hilbert, the coherence of their theories for real num-
bers was central. Dedekind had aimed for, and thought he had achieved in
his (1888), “the purely logical construction of the science of numbers and the
continuous realm of numbers gained in it.”12 Within the logical frame of that
essay Dedekind defines simply infinite systems and provides also an “exam-
ple” or “instance”. The point of such an instantiation is articulated sharply
and forcefully in his famous letter to Keferstein where he asks, whether simply
infinite systems “exist at all in the realm of our thoughts”. He supports the
affirmative answer by a logical existence proof. Without such a proof, he ex-
plains, “it would remain doubtful, whether the concept of such a system does
not perhaps contain internal contradictions”. His Gedankenwelt, “the totality
S of all things that can be object of my thinking”, was crucial for obtaining a
simply infinite system.13

Cantor recognized Dedekind’s Gedankenwelt as an inconsistent system and
communicated that fact to both Dedekind (in 1896) and to Hilbert (in 1897).
When Hilbert formulated arithmetic in his (1900b), he reformulated the

11(Hilbert 1922) in (Ewald 1996, p. 1118). — That is fully in Dedekind’s spirit: Hilbert’s
critical remark about the definition of real numbers as cuts do not apply to Dedekind, as
should be clear from my discussion (in the previous note), and the issue of consistency was
an explicit part of Dedekind’s logicist program.

12The systematic build-up of the continuum envisioned in (1872c, pp. 5–6) is carried out in
later manuscripts where integers and rationals are introduced as equivalence classes of pairs
of natural numbers; they serve as models for subsystems of the axioms for the reals, in a
completely modern way. — All of these developments as well as that towards the formulation
of simply infinite systems are analyzed in (Sieg 2005).

13Let me support, by appeal to authority, the claim that Dedekind’s thoughts are not
psychological ideas: Frege asserts in his manuscript Logik from 1894 that he uses the word
“Gedanke” in an unusual way and remarks that “Dedekind’s usage agrees with mine”. It is
worthwhile noting that Frege, in this manuscript, approved of Dedekind’s argument for the
existence of an infinite system. — Note also that Hilbert formulated his existential axiomatics
with the phrase “wir denken”, so that the system is undoubtedly an object of our thought,
indeed, “ein Gedanke”.
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problem of instantiating logoi as a quasi-syntactic problem: Show that no con-
tradiction is provable from the axiomatic conditions in a finite number of logical
steps. That is, of course, the second problem of his Paris address I discussed
in section 1. He took for granted that consistency amounts to mathematical
existence and assumed that the ordinary investigations of irrational numbers
could be turned into a model theoretic consistency proof within a restricted
logicist framework. This was crucial for the arithmetization of analysis and
its logicist founding. It should be mentioned that Hilbert in Grundlagen der
Geometrie also “geometrized” analysis by giving a geometric model via his
“Streckenrechnung” for the axioms of arithmetic (with full continuity only in
the second edition of the Grundlagen volume).

In his lecture (*1920b), Hilbert formulated the principles of Zermelo’s set
theory (in the language of first-order logic). He considered Zermelo’s theory
as providing the mathematical objects Dedekind had obtained through logicist
principles; Hilbert remarked revealingly:

The theory, which results from developing all the consequences of this axiom system,
encompasses all mathematical theories (like number theory, analysis, geometry) in
the following sense: the relations that hold between the objects of one of these math-
ematical disciplines are represented in a completely corresponding way by relations
that obtain in a sub-domain of Zermelo’s set theory.14

In spite of this perspective, Hilbert reconsidered at the end of the 1920-lecture
his earlier attempt (published as (1905a)) to establish by mathematical proof
that no contradiction can be proved in formalized elementary number theory.
That had raised already then the issue, how proofs can be characterized and
subjected to mathematical investigation. It was only after the study of Prin-
cipia Mathematica that Hilbert had a properly general and precise concept of
(formal) proof available.

3 Rigorous proofs

Proofs are essential for developing any mathematical subject, vide Euclid in the
Elements or Dedekind in Was sind und was sollen die Zahlen?. In the intro-
duction to his Grundgesetze der Arithmetik, Frege distinguished his systematic
development from Euclid’s by pointing to the list of explicit inference principles
for obtaining gapless proofs. As to Dedekind’s essay he remarked polemically
that no proofs can be found in that work. Dedekind and Hilbert explicated
the “science of (natural) number” and “arithmetic (of real numbers)” in sim-
ilar ways; their theories start from the defining conditions for simply infinite
systems, respectively complete ordered fields. Dedekind writes in (1888):

14(Hilbert *1920b, p. 23). Here is the German text: “Die Theorie, welche sich aus der En-
twicklung dieses Axiomensystems in seine Konsequenzen ergibt, schliesst alle mathematischen
Theorien (wie Zahlentheorie, Analysis, Geometrie) in sich in dem Sinne, dass die Beziehun-
gen, welche sich zwischen den Gegenständen einer dieser mathematischen Disziplinen finden,
vollkommen entsprechend dargestellt werden durch die Beziehungen, welche in einem Teilge-
biete der Zermeloschen Mengenlehre stattfinden.”
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The relations or laws which are derived exclusively from the conditions [for a sim-
ply infinite system] and are therefore always the same in all ordered simply infinite
systems, . . . form the next object of the science of numbers or arithmetic.15

The term “derive” is left informal; hence Frege’s critique. Exactly at this point
enters logic in the restricted modern sense as dealing with formal methods for
correct, truth-preserving inference.

3.1 Natural deductions

Underlying Dedekind’s and Hilbert’s descriptions is an abstract concept of
logical consequence. Hilbert stated in 1891 during a famous stop at a Berlin
railway station that in a proper axiomatization of geometry “one must always
be able to say ‘tables, chairs, beer mugs’ instead of ‘points, straight lines,
planes’.” This remark has been taken as claiming that the basic terms must be
meaningless, but it is more adequately understood if it is put side by side with
a remark of Dedekind’s in a letter to Lipschitz written fifteen years earlier: “All
technical expressions [can be] replaced by arbitrary, newly invented (up to now
meaningless) words; the edifice must not collapse, if it is correctly constructed,
and I claim, for example, that my theory of real numbers withstands this
test.” Thus, logical arguments leading from principles to derived claims cannot
be severed by a re-interpretation of the technical expressions or, to put it
differently, there are no counterexamples to the arguments.

Dedekind’s and Hilbert’s presentations are detailed, reveal the logical form of
arguments, and reflect features of the mathematical structures. In the very first
sentence of the Preface to his (1888), Dedekind programmatically emphasizes
that “in science nothing capable of proof should be accepted without proof” and
claims that only common sense (“gesunder Menschenverstand”) is needed to
understand his essay. But he recognizes also that many readers will be discour-
aged, when asked to prove truths that seem obvious and certain by “the long
sequence of simple inferences that corresponds to the nature of our step-by-step
understanding” (Treppenverstand).16 Dedekind believes that there are only a
few such simple inferences, but he does not explicitly list them. Looking for an
expressive formal language and powerful inferential tools, Hilbert moved slowly
toward a presentation of proofs in logical calculi. He and his students started
in 1913 to learn modern logic by studying Principia Mathematica. During the
winter term 1917–18 he gave the first course in mathematical logic proper and
sketched, toward the end of the term, how to develop analysis in ramified type
theory with the axiom of reducibility.17

15(Dedekind 1888, sec. 73). In the letter to Keferstein, on p. 9, Dedekind reiterates this
perspective and requires that every claim “must be derived completely abstractly from the
logical definition of [the simply infinite system] N”.

16(Dedekind 1888, p. IV). Dedekind continues: “Ich erblicke dagegen gerade in der Mög-
lichkeit, solche Wahrheiten auf andere, einfacherere zurückzuführen, mag die Reihe der
Schlüsse noch so lang und scheinbar künstlich sein, einen überzeugenden Beweis dafür, daß
ihr Besitz oder der Glaube an sie niemals unmittelbar durch innere Anschauung gegeben, son-
dern immer durch eine mehr oder weniger vollständige Wiederholung der einzelnen Schlüsse
erworben ist.”

17That is usually associated with the book (Hilbert and Ackermann 1928) that was pub-
lished only in 1928; however, that book takes over the structure and much of the content
from these earlier lecture notes. See my paper (1999) and the forthcoming third volume of
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So there is finally (in Göttingen) a way of building up gapless proofs in
Frege’s sense. However, Hilbert aimed for a framework in which mathemat-
ics can be formalized in a natural and direct way. The calculus of Principia
Mathematica did not lend itself to that task. In the winter term 1921–22 he
presented a logical calculus that is especially interesting for sentential logic. He
points to the parallelism with his axiomatization of geometry: groups of axioms
are introduced there for each concept, and that is done here for each logical
connective. Let me formulate the axioms for just conjunction and disjunction:

A & B → A ((A→ C) & (B → C)) → ((A ∨B) → C)

A & B → B A→ (A ∨B)

A→ (B → A & B) B → (A ∨B)

The simplicity of this calculus and its directness for formalization inspired the
work of Gentzen on natural reasoning. It should be pointed out that Bernays
had proved the completeness of Russell’s calculus in his Habilitationsschrift
of 1918 and had investigated rule-based variants. The proof theoretic inves-
tigations of, essentially, primitive recursive arithmetic in the 1921–22 lectures
also led to a tree-presentation of proofs, what Hilbert and Bernays called “the
resolution of proofs into proof threads” (die Auflösung von Beweisen in Bewe-
isfäden).18 The full formulation of the calculus and the articulation of the
methodological parallelism to Grundlagen der Geometrie are also found in
(Hilbert and Bernays 1934, pp. 63–64).

3.2 Strategies
Gentzen formulated natural deduction calculi using Hilbert’s axiomatic formu-
lation as a starting point and called them calculi of natural reasoning
(natürliches Schließen); he emphasized that making and discharging assump-
tions were their distinctive features. Here are the Elimination and Introduction
rules for the connectives discussed above and as formulated in (Gentzen 1936);
the configurations that are derived with their help are sequents of the form
Γ ⊃ ψ with Γ containing all the assumptions on which the proof of ψ depends:

Γ ⊃ A & B

Γ ⊃ A

Γ ⊃ A & B

Γ ⊃ B

Γ ⊃ A ∨B Γ, A ⊃ C Γ, B ⊃ C

Γ ⊃ C

Γ ⊃ A Γ ⊃ B

Γ ⊃ A & B

Γ ⊃ A

Γ ⊃ A ∨B

Γ ⊃ B

Γ ⊃ A ∨B

Hilbert’s Lectures on the Foundations of Mathematics and Physics. — In the final section of
his (2008), Wiedijk lists “three main revolutions” in mathematics: the introduction of proof
in classical Greece (culminating in Euclid’s Elements), that of rigor in the 19th century, and
that of formal mathematics in the late 20th and early 21st centuries. The latter revolution,
if it is one, took place in the 1920s.

18On account of this background, I assume, Gentzen emphasized in his dissertation and his
first consistency proof for elementary number theory the dual character of introduction and
elimination rules, but considered making and discharging assumptions as the most important
feature of his calculi.
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Gentzen and later Prawitz established normalization theorems for proofs in nd
calculi.19 As the calculi are complete, one obtains proof theoretically refined
completeness theorems: if ψ is a logical consequence of Γ, then there is a normal
proof of ψ from Γ. I reformulated the nd calculi as intercalation calculi20 for
which these refined completeness theorems can be proved semantically without
appealing to a syntactic normalization procedure; see (Sieg and Byrnes 1998)
for classical first-order logic as well as (Sieg and Cittadini 2005) for some non-
classical logics, in particular, for intuitionist first-order logic.

The refined completeness results and their semantic proofs provide founda-
tions to the systematic search for normal proofs in nd calculi. This is method-
ologically analogous to the use of completeness results for cut-free sequent
calculi and was exploited in the pioneering work of Hao Wang.21 The subfor-
mula property of normal and cut-free derivations is fundamental for mechanical
search. The ic calculi enforce normality by applying the E-rules only on the left
to premises and the I-rules only on the right to the goal. In the first case one
really tries to “extract” a goal formula by a sequence of E-rules from an assump-
tion in which it is contained as a strictly positive subformula. This feature is
distinctive and makes search efficient, but it is in a certain sense just a natural
systematization and logical deepening of the familiar forward and backward ar-
gumentation. Suitable strategies have been implemented and guide a complete
search procedure for first-order logic, called AProS.22 In Appendix A, I discuss
examples of purely logical arguments.23 The AProS strategies can be extended
by E- and I-rules for definitions, so that the meanings of defined notions as
well as those of logical connectives can be used to guide search. In this way we
have developed quite efficiently the part of elementary set theory concerning
Boolean operations, power sets, Cartesian products, etc. In Appendix B, the
reader finds two examples of set theoretic arguments.

You might think, that is interesting, but what relevance do these considera-
tions have for finding proofs in more complex parts of mathematics? To answer
that question and put it into a broader context, let me first note that the his-
tory of such computational perspectives goes back at least to Leibniz, and that
it can be illuminated by Poincaré’s surprising view of Hilbert’s Grundlagen der
Geometrie. In his review of Hilbert’s book, he suggested giving the axioms to
a reasoning machine, like Jevons’s logical piano, and observing whether all of
geometry would be obtained. He wrote that such radical formalization might

19The first version of Gentzen’s dissertation was recently discovered by Jan von Plato in
the Bernays Nachlass of the ETH in Zürich. It contains a detailed proof of the normalization
theorem for intuitionist predicate logic; see (von Plato 2008).

20I discovered only recently that Beth in his (1958) employs “intercalate” (on p. 87) when
discussing the use of lemmata in the proofs of mathematical theorems.

21See the informative and retrospective discussion in his (1984) and, perhaps, also the
programmatic (1970). — Cf. also my (2007).

22Nd calculi were considered as inappropriate for theorem proving because of the
seemingly unlimited branching in a backward search afforded by modus ponens (condi-
tional elimination). The global property of normality for nd proofs could not be di-
rectly exploited for a locally determined backward search; hence, the intercalation for-
mulation of natural deduction. The implementation of AProS can be downloaded at
http://caae.phil.cmu.edu/projects/apros/

23In (Sieg and Field 2005, pp. 334–5), the problem of proving that
√

2 is not rational is
formulated as a logical problem, and AProS finds a proof directly; cf. the description of the
difficulties of obtaining such a proof in (Wiedijk 2008).
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seem “artificial and childish”, were it not for the important question of “com-
pleteness”:

Is the list of axioms complete, or have some of them escaped us, namely those we use
unconsciously? . . . One has to find out whether geometry is a logical consequence of
the explicitly stated axioms or, in other words, whether the axioms, when given to
the reasoning machine, will make it possible to obtain the sequence of all theorems
as output [of the machine].24

With respect to a sophisticated logical framework and under the assumption
of the finite axiomatizability of mathematics, Poincaré’s problem morphed into
what Hilbert and others viewed in the 1920s as the most important problem of
mathematical logic: the decision problem (Entscheidungsproblem) for predicate
logic. Its special character was vividly described in a talk Hilbert’s student
Behmann gave in 1921:

For the nature of the problem it is of fundamental significance that as auxiliary
means . . . only the completely mechanical reckoning according to a given prescription
[Vorschrift] is admitted, i.e., without any thinking in the proper sense of the word. If
one wanted to, one could speak of mechanical or machine-like thinking. (Perhaps it
can later even be carried out by a machine.)

Johann von Neumann argued against the positive solvability of the decision
problem, in spite of the fact that — as he formulated matters in 1924 —
“. . . we have no idea how to prove the undecidability”. It was only twelve years
later that Turing provided the idea, i.e., introduced the appropriate concept,
for proving the unsolvability of the Entscheidungsproblem.

The issue for Turing was, What are the procedures a human being can carry
out when mechanically operating as a computer?25 In his classical paper On
computable numbers with an application to the Entscheidungsproblem, Turing
isolated the basic steps underlying a computer’s procedures as the operations of
a Turing machine. He then proved: There is no procedure that can be executed
by a Turing machine and solves the decision problem. Using the concepts of
general recursive and λ-definable functions, Church had also established the
undecidability of predicate logic. The core of Church’s argument was presented
in Supplement II of Grundlagen der Mathematik, vol. II. However, it was not
only expanded by later considerations due to Church and Kleene, but also
deepened by local axiomatic considerations for the concept of a reckonable
function.26

24(Poincaré 1902b, pp. 252–253).
25For Turing a “computer” is a human being carrying out a “calculation” and using only

minimal cognitive capacities. The limitations of the human sensory apparatus motivate finite-
ness and locality conditions; Turing’s supporting argument is not mathematically precise, and
I don’t think there is any hope of turning the analysis into a mathematical theorem. What
one can do, however, is to exploit it as a starting point for formulating a general concept and
establishing a representation theorem; cf. my paper (2008a).

26I distinguish local from global axiomatics. As an example of the former I discuss in
part 4.1 an abstract proof of Gödel’s incompleteness theorems. Other examples can be
found in Hilbert’s 1917-talk in Zürich, but also in contemporary discussions, e.g., Booker’s
report on L-functions in the Notices of the AMS, p. 1088. Booker remarks that many objects
go by the name of L-function and that it is difficult to pin down exactly which ones are.
He attributes then to A. Selberg an “axiomatic approach” consisting in “writing down the
common properties of the known examples” — as axioms.
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Hilbert and Bernays introduced reckonable functions informally as those
number theoretic functions whose values can be determined in a “deductive
formalism”. They proved that, if the deductive formalism satisfies their re-
cursiveness conditions, then the class of reckonable functions is co-extensional
with that of the general recursive ones. (The crucial condition requires that the
proof relation of the deductive formalism is primitive recursive.) Their concept
is one way of capturing the “completely mechanical reckoning according to a
given prescription” mentioned in the quotation from Behmann. Indeed, it gen-
eralizes Church’s informal notion of calculable functions whose values can be
determined in a logic and imposes the recursiveness condition in order to ob-
tain a mathematically rigorous formulation. For us the questions are of course:
Can a machine carry out this mechanical thinking? and, if a universal Turing
machine in principle can, What is needed to copy, as Turing put it in 1948,
aspects of mathematical thinking in such a machine? — Copying requires an
original, i.e., that we have uncovered suitable aspects of the mathematical mind
when trying to extend automated proof search from logic to mathematics.

4 Local axiomatics

At the end of his report on Intelligent Machinery from 1948, Turing suggested
that machines might search for proofs of mathematical theorems in suitable
formal systems. It was clear to Turing that one cannot just specify axioms and
logical rules, state a theorem, and expect a machine to demonstrate the theo-
rem. For a machine to exhibit the necessary intelligence it must “acquire both
discipline and initiative”. Discipline would be acquired by becoming (prac-
tically) a universal machine; Turing argued that “discipline is certainly not
enough in itself to produce intelligence” and continued:

That which is required in addition we call initiative. This statement will have to serve
as a definition. Our task is to discover the nature of this residue as it occurs in man,
and try and copy it in machines. (p. 21)

The dynamic character of strategies constitutes but a partial and limited copy
of human initiative. Nevertheless, local axiomatics that allows the expression
of leading ideas together with a hierarchical organization that reflects the con-
ceptual structure of a field can carry us a long way. Hilbert expressed his views
in 1919 as follows, arguing against the logicists’ view that mathematics consists
of tautologies grounded in definitions:

If this view were correct, mathematics would be nothing but an accumulation of
logical inferences piled on top of each other. There would be a random concatenation
of inferences with logical reasoning as its sole driving force. But in fact there is
no question of such arbitrariness; rather we see that the formation of concepts in
mathematics is constantly guided by intuition and experience, so that mathematics
on the whole forms a non-arbitrary, closed structure.27

27(Hilbert *1919, p. 5). Here is the German text: “Wäre die dargelegte Ansicht zutreffend,
so müsste die Mathematik nichts anderes als eine Anhäufung von übereinander getürmten
logischen Schlüssen sein. Es müsste ein wahlloses Aneinanderreihen von Folgerungen statt-
finden, bei welchem das logische Schliessen allein die treibende Kraft wäre. Von einer solchen
Willkür ist aber tatsächlich keine Rede; vielmehr zeigt sich, dass die Begriffsbildungen in der
Mathematik beständig durch Anschauung und Erfahrung geleitet werden, sodass im grossen
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Hilbert’s grouping of the axioms for geometry in his (1899a) had the express
purpose of organizing proofs and the subject in a conceptual way: parts of
his development are marvelous instances of local axiomatics, analyzing which
notions and principles are needed for which theorems.

4.1 Modern

The idea of local axiomatics can be used for individual mathematical theorems
and asks, How can we prove this particular theorem or this particular group
of theorems? Hilbert and Bernays used the technique in their Grundlagen der
Mathematik II also outside a foundational axiomatic context: first for proving
Gödel’s incompleteness theorems and then, as I indicated at the end of section
3.2, for showing that the functions reckonable in formal deductive systems
coincide with the general recursive ones. One crucial task has to be taken
on for local as well as for global axiomatics, namely, isolating what is at the
heart of an argument or uncovering its leading (mathematical) idea. That was
proposed by Saunders MacLane in his Göttingen dissertation (of late 1933)
and summarized in his (1935). MacLane emphasized that proofs are not “mere
collections of atomic processes, but are rather complex combinations with a
highly rational structure”. When reviewing in 1979 this early logical work,
he ended with the remark, “There remains the real question of the actual
structure of mathematical proofs and their strategy. It is a topic long given up
by mathematical logicians, but one which still — properly handled — might
give us some real insight.”28 That is exactly the topic I am trying to explore.

As an illustration of the general point concerning the “rational structure” of
mathematical arguments, I consider briefly the proofs of Gödel’s incomplete-
ness theorems. These proofs make use of the connection between the mathe-
matics that is used to present a formal theory and the mathematics that can
be formally developed in the theory. Three steps are crucial for obtaining the
proofs, steps that go beyond the purely logical strategies and are merged into
the search algorithm:

1. Local axioms: representability of the core syntactic notions, the diagonal
lemma, and the Hilbert & Bernays derivability conditions.

2. Proof-specific definitions: formulating instances of existential claims, for
example, the Gödel sentence for the first incompleteness theorem.

3. Leading idea: moving between object- and meta-theory, expressed by ap-
propriate Elimination and Introduction rules (for example, if a proof of A
has been obtained in the object-theory, then one is allowed to introduce the
claim ‘A is provable’ in the meta-theory).

AProS finds the proofs efficiently and directly, even those that did not enter
into the analysis of the leading idea, for example, the proof of Löb’s theorem.
All of this is found in (Sieg and Field 2005).

und ganzen die Mathematik ein willkürfreies, geschlossenes Gebilde darstellt.”
28The first quotation is from MacLane’s (1935, p. 130), the second from his (1979, p. 66).

The processes by means of which MacLane tries to articulate the “rational structure” of
proofs should be examined in greater detail.
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It has been a long-standing tradition in mathematics to give and to analyze
a variety of arguments for the same statement; the fundamental theorems of
algebra and arithmetic are well-known examples. In this way we delimit con-
ceptual contexts, provide contrasting explanations for the theorem at hand,
and gain a deeper understanding by looking at it in different ways, e.g., from a
topological or algebraic perspective.29 An automated search requires obviously
a sharp isolation of local axioms and leading ideas that underlie a proof. Such
developments can be integrated into a global framework through a hierarchi-
cal organization, and that has been part and parcel of mathematical practice.
Hilbert called it Tieferlegung der Fundamente!

These broad ideas are currently being explored in order to obtain an auto-
mated proof of the Cantor-Bernstein theorem from Zermelo’s axioms for set
theory.30 The theorem claims that there is a bijection between two sets, in
case there are injections from the first to the second and from the second to
the first. The theorem is a crucial part of the investigations concerning the size
of sets and guarantees the anti-symmetry of the partial ordering of sets by the
“smaller-or-equal-size” relation.31 We have begun to develop set theory from
Zermelo’s axioms and use three layers for the conceptual organization of the
full proof:

A. Construction of sets, for example, empty set, power set, union, and pairs.
B. Introduction of functions as set theoretic objects.
C. The abstract proof.

The abstract proof is divided in the same schematic way as that of Gödel’s
theorems and is independent of the set theoretic definition of function. The
local axioms are lemmata for injective, surjective, and bijective functions as
well as a fixed-point theorem. The crucial proof-specific definition is that of
the bijection claimed to exist in the theorem. Finally, the leading idea is simply
to exploit the fixed-point property and verify that the defined function is indeed
a bijection. — It is noteworthy that the differences between the standard proofs
amount to different ways of obtaining the smallest fixed-point of an inductive
definition.

4.2 Classical
Shaping a field and its proofs by concepts is classical; so is the deepening of
its foundations. That can be beautifully illustrated by the developments in

29In the Introduction to the second edition of (Dirichlet 1863) Dedekind emphasized this
aspect for the development of a whole branch of mathematics. In the tenth supplement to
this edition of Dirichlet’s lectures, he presented his general theory of ideals in order, as he
put it, “to cast, from a higher standpoint, a new light on the main subject of the whole
book”. In German, “Endlich habe ich in dieses Supplement eine allgemeine Theorie der
Ideale aufgenommen, um auf den Hauptgegenstand des ganzen Buches von einem höheren
Standpunkte aus ein neues Licht zu werfen.” He continues, “hierbei habe ich mich freilich auf
die Darstellung der Grundlagen beschränken müssen, doch hoffe ich, daß das Streben nach
charakteristischen Grundbegriffen, welches in anderen Teilen der Mathematik mit so schönem
Erfolg gekrönt ist, mir nicht ganz mißglückt sein möge.” (Dedekind 1932, pp. 396–7).

30My collaborators on this particular part of the AProS Project have been Ian Kash, Tyler
Gibson, Michael Warren, and Alex Smith.

31On p. 209 of Cantor’s (1932) Gesammelte Abhandlungen, Zermelo calls this theorem “one
of the most important theorems of all of set theory”.
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the first two books of Euclid’s Elements (and the related investigations at the
beginning of Book XII). Proposition 47 of Book I, the Pythagorean theorem, is
at the center of those developments. The broad mathematical context is given
by the quadrature problem, i.e., determining the “size” or, in modern terms,
the area of geometric figures in terms of squares. The problem is discussed
in Book II for polygons. Polygons can be partitioned into triangles that can
be transformed individually (by ruler and compass constructions) first into
rectangles “of equal area” and then into equal squares.32 The question is,
how can we join these squares to obtain one single square that is equal to the
polygon we started out with? It is precisely here that the Pythagorean theorem
comes in and provides the most direct way of determining the larger square.
Byrne’s colorful diagram, displayed below, captures the construction and the
abstract proof of the theorem. If one views the determination of the larger
square as a geometric computation, then the proof straightforwardly verifies
its correctness.33

For the proof, Euclid has us first construct
the squares on the triangle’s sides and then
make the observation that the extensions of
the sides of the smaller squares by the con-
tiguous sides of the original triangle consti-
tute lines. In the next step a crucial auxiliary
line is drawn, namely, the line that is per-
pendicular to the hypotenuse and that passes
through the vertex opposite the hypotenuse.
This auxiliary line partitions the big square
into the blue and yellow rectangles. Two
claims are now considered: the blue rectangle
is equal to the black square, and the yellow
rectangle is equal to the red square. Euclid
uses three facts that are readily obtained from earlier propositions: (α) Trian-
gles are equal when they have two equal sides and when the enclosed angles are
equal (Proposition I.4); (β) Triangles are equal when they have the same base

32Euclid simply calls the geometric figures “equal”. This is central and has been pursued
throughout the evolution of geometry. In Hilbert’s (1899a), a whole chapter is devoted to “Die
Lehre von den Flächeninhalten in der Ebene”, Chapter IV, making the implicit Euclidean
assumptions concerning “area” explicit. See also Hartshorne’s book, section 22, Area in
Euclid’s geometry.

33Hilbert remarked in his (*1899b), “Wir werden im folgenden häufig Gebrauch von Fi-
guren machen, wir werden uns aber niemals auf sie verlassen. Stets müssen wir dafür sor-
gen, daß die an einer Figur vorgenommenen Operationen auch rein logisch gültig bleiben.
Es kann dies garnicht genug betont werden; im richtigen Gebrauch der Figuren liegt eine
Hauptschwierigkeit unserer Untersuchungen.” (p. 303) Here I am obviously not so much
interested in the (correct) use of diagrams as analyzed by Manders and for which Avigad
e.a. have provided an informative formal framework. Manders’s analysis led to the asser-
tion that only topological features of diagrams are relevant for and appealed to in Euclidean
proofs; the conceptual setting sketched above with its focus on “area” gives a reason for that
assertion. There is also important work from the early part of the 20th century by Hans
Brandes and, in particular, Paul Mahlo in his 1908 dissertation. This work tries to classify
the “Zerlegungsbeweise” of the Pythagorean theorem and should be investigated carefully;
(Bernstein 1924) reflects on those dissertations.
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and when their third vertex lies on the same parallel to that base (Proposition
I.37); (γ) A diagonal divides a rectangle into two equal triangles (Proposition
I.41).34

Here is the proof based on (α) through (γ) for the red square and the yellow
rectangle. (The common notions are implicitly appealed to; the argument for
the equality of the black square and the blue rectangle is analogous.) The
triangles ABC and DCE satisfy the conditions of (α) and are thus equal; on
account of (β) they are equal to DBC and FCE, respectively. Finally, (γ)
ensures the equality of the red square and yellow rectangle. Comparing the
structure of this argument to that of the abstract proofs for the incompleteness
theorem and the Cantor-Bernstein theorem, we can make the following general
observations: (α) through (γ) are used as local axioms; the auxiliary line drawn
through the vertex opposite of the hypotenuse and perpendicular to it is the
central proof-specific definition; finally, the leading idea is the partitioning of
squares and establishing that corresponding parts are equal.

The character of the “deepening of the foundations” is amusingly depicted by
anecdotes concerning Hobbes and Newton: Hobbes started with Proposition 47
and was convinced of its truth only after having read its proof and all the (proofs
of the) propositions supporting it; Newton, in contrast, started at the beginning
and could not understand, why such evident propositions were being established
— until he came to the Pythagorean theorem. Less historically, there is also
a deeper parallelism with the overall structure of the proof of the Cantor-
Bernstein theorem from Zermelo’s axioms. The construction of figures like
triangles and squares corresponds to A (in the list A–C concerning the Cantor-
Bernstein theorem); the congruence criteria for such figures correspond to B;
the abstract proof of the geometric theorem, finally, has the same conceptual
organization as the set theoretic proof referenced in C.

The abstract proof of the Pythagorean theorem and its deepening are shaped
by the mathematical context, here the quadrature problem. I want to end
this discussion with two related observations. Recall that the Pythagorean
theorem is used in Hippocrates’s proof for the quadrature of the lune.35 This
is just one of its uses for solving quadrature problems, but it seems to be
very special, as only the case for isosceles triangles is exploited. The crucial
auxiliary line divides in half the square over the hypotenuse, and we have a
perfectly symmetric configuration.36 Here is the first observation, namely, the
claim concerning the equality of the rectangles (into which the square over the
hypoteneuse is divided) and squares (over the legs) is “necessary”, and the proof
idea is relatively straightforward. That leads me to the second observation that
is speculative and formulated as a question: Isn’t it plausible that the Euclidean
proof is obtained by generalizing this special one?

34This is not exactly Euclid’s proof. Euclid does not appeal to I.37, but just to I.41, which
is really a combination of (β) and (γ) and applies directly to the diagram; I.37 is used in the
proof of I.41. — The colorful diagram is from Byrne’s edition of the first six books of the
Euclidean Elements, London, 1847. [The labeling of points was added by me; WS.]

35See the very informative discussion in (Dunham 1990).
36In (Aumann 2009, pp. 64–65) knowledge of this geometric fact is attributed to the Baby-

lonians, and it is the one Socrates extracts from the slave boy in Plato’s Meno.
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Karzel and Kroll, in their Geschichte der Geometrie seit Hilbert under the
heading “Order and Topology”, link the classical Greek considerations back (or
rather forward) to modern developments:

In Euclidean geometry triangles and also rectangles take on the role of elementary
figures out of which more complex figures are thought to be composed. To these
elementary figures one can assign in Euclidean geometry an area in a natural way. If
one assumes in addition the axiom of continuity, then one arrives at the concept of
an integral when striving to assign an area also to more complex figures.37

So we have returned to continuity and to Dedekind.

5 Cognitive aspects

In his (1888) Dedekind refers to his Habilitationsrede where he claimed that the
need to introduce appropriate notions arises from the fact that our intellectual
powers are imperfect. Their limitation leads us to frame the object of a science
in different forms and introducing a concept means, in a certain sense, formu-
lating a hypothesis on the inner nature of the science. How well the concept
captures this inner nature is determined by its usefulness for the development
of the science, and in mathematics that is mainly its usefulness for construct-
ing proofs. Dedekind put the theories from his foundational essays to this test
by showing that they allow the direct, stepwise development of analysis and
number theory. Thus, Dedekind viewed general concepts and general forms
of arguments as tools to overcome, at least partially, the imperfection of our
intellectual powers. He remarked:

Essentially, there would be no more science for a man gifted with an unbounded
understanding — a man for whom the final conclusions, which we obtain through
a long chain of inferences, would be immediately evident truths; and this would be
so even if he stood in exactly the same relation to the objects of science as we do.
(Ewald 1996, pp. 755–6)

The theme of bounded human understanding is sounded also in a remark
from (Bernays 1954): “Though for differently built beings there might be a dif-
ferent kind of evidence, it is nevertheless our concern to find out what evidence
is for us.”38 Bernays put forth the challenge of finding out what is evidence for
us, not for some differently built being. Turing in his (1936) appealed crucially
to human cognitive limitations to arrive at his notion of computability. Ten
years later Gödel took the success of having given “an absolute definition of
an interesting epistemological notion”, i.e., of effective calculability, as encour-
agement to strive for “the same thing” with respect to demonstrability and
mathematical definability. That was attempted in his (1946). Reflecting on a
possible objection to his concept of ordinal definability, namely, that uncount-
ably many sets are ordinal definable, Gödel considers as plausible the view

37(Karzel and Kroll 1988, p. 121). The German text is: “In der euklidischen Geometrie spie-
len neben den Dreiecksflächen noch die Rechtecksflächen . . . die Rolle von Elementarflächen,
aus denen man sich kompliziertere Flächen zusammengesetzt denkt. Diesen Elementarflächen
kann man in der euklidischen Geometrie in natürlicher Weise einen Flächeninhalt zuweisen.
Setzt man nunmehr noch das Stetigkeitsaxiom voraus, so gelangt man beim Bemühen, auch
komplizierteren Flächen einen Inhalt zuzuweisen, zum Integralbegriff.”

38(Bernays 1954, p. 18). The German text is: “Obwohl es für anders gebildete Wesen eine
andere Evidenz geben könnte, so ist jedoch unser Anliegen festzustellen, was Evidenz für uns
ist.”
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“that all things conceivable by us are denumerable”. Indeed, he thinks that
a concept of definability “satisfying the postulate of denumerability” is pos-
sible, but “that it would involve some extramathematical element concerning
the psychology of the being who deals with mathematics”.

Reflections on cognitive limitations motivated also the finitist program’s goal
of an absolute epistemological reduction. Bernays provides in his (1922) a view
of the program in statu nascendi and connects it to the existential axiomatics
discussed above in Part 2. When giving a rigorous foundation for arithmetic
or analysis one proceeds axiomatically, according to Bernays, and assumes the
existence of a system of objects satisfying the structural conditions expressed
by the axioms. In the assumption of such a system “lies something transcen-
dental for mathematics, and the question arises, which principled position is to
be taken [towards that assumption]”. An intuitive grasp of the completed se-
quence of natural numbers, for example, or even of the manifold of real numbers
is not excluded outright. However, taking into account tendencies in the exact
sciences, one might try “to give a foundation to these transcendental assump-
tions in such a way that only primitive intuitive knowledge is used”. That is
to be done by giving finitist consistency proofs for systems in which significant
parts of mathematics can be formalized. The second incompleteness theorem
implies, of course, that such an absolute epistemological reduction cannot be
achieved. What then is evidence for principles that allow us to step beyond the
finitist framework? — Bernays emphasized in his later writings that evidence is
acquired by intellectual experience and through experimentation in an almost
Dedekindian spirit. In his (1946) he wrote:

In this way we recognize the necessity of something like intelligence or reason that
should not be regarded as a container of [items of] a priori knowledge, but as a
mental activity that consists in reacting to given situations with the formation of
experimentally applied categories.39

This intellectual experimentation in part supports the introduction of concepts
to define abstract structures or to characterize accessible domains (obtained
by general inductive definitions), and it is in part supported by using these
concepts in proofs of central theorems.40

I intended to turn attention to those aspects of the mathematical mind that
are central, if we want to grasp the subtle connection between reasoning and

39(Bernays 1946, p. 91). The German text is: “Wir erkennen so die Notwendigkeit von
etwas wie Intelligenz oder Vernunft, die man nicht anzusehen hat als Behältnis von Erkennt-
nissen a priori, sondern als eine geistige Tätigkeit, die darin besteht, auf gegebene Situationen
mit der Bildung von versuchsweise angesetzten Kategorien zu reagieren.” — Unfortunately,
“applied” is not capturing “angesetzten”. The latter verb is related to “Ansatz”. That noun
has no adequate English rendering either, but is used (as in “Hilbertscher Ansatz”) to express
a particular approach to solving a problem that does however not guarantee a solution.

40Andrea Cantini expresses in his recent (2008) a similar perspective, emphasizing also
the significance of “geistiges Experimentieren” in Bernays’s reflections on mathematics; see
pp. 34–37. In the very same volume in which Cantini’s article is published, Carlo Celluci
describes a concept of analytic proof that incorporates many features of the experimentation
both Cantini and I consider as important. However, Celluci sharply contrasts that concept
with that of an axiomatic proof. These two notions, it seems to me, stand in opposition only
if one attaches to the latter concept a dogmatic foundationalist intention. — In (Sieg 2010b)
I have compared Gödel’s and Turing’s approach to such intellectual experimentation.
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understanding in mathematics, as well as the role of leading ideas in guiding
proofs and of general concepts in providing explanations. Implicitly, I have
been arguing for an expansion of proof theory : Let us take steps toward a the-
ory that articulates principles for organizing proofs conceptually and for finding
them dynamically. A good start is a thorough reconstruction of parts of the
rich body of mathematical knowledge that is systematic, but is also structured
for intelligibility and discovery, when viewed from the right perspective. Such
an expanded proof theory should be called structural for two reasons. On the
one hand one exploits the intricate internal structure of (normal) proofs, and on
the other hand one appeals to the notions and principles characterizing math-
ematical structures. (Cf. also the very tentative parallel remarks in Appendix
C.)

When focusing on formal methods and carrying out computations in support
of proof search experiments, we have to isolate truly creative elements in proofs
and thus come closer to an understanding of the technique of our mathematical
thinking, be it mechanical or non-mechanical. Hilbert continued his remarks
in (1927) about the formula game as follows:

Thinking, it so happens, parallels speaking and writing: we form statements and place
them one behind another. If any totality of observations and phenomena deserves to
be made the object of a serious and thorough investigation, it is this one — since,
after all, it is part of the task of science to liberate us from arbitrariness, sentiment,
and habit . . . (p. 475)

I could not agree more (with the second sentence in this quotation) and share
Hilbert’s eternal optimism, “Wir müssen wissen! Wir werden wissen!”

Appendices

AProS’ distinctive feature is its goal-directed search for normal proofs. It ex-
ploits an essential feature of normal proofs, i.e., the division of every branch in
their representing tree into an E- and an I-part; see (Prawitz 1965, p. 41). This
global property of nd proofs, far from being an obstacle to backward search,
makes proof search both strategic and efficient. — Siekmann and Wright-
son collected in their two volume Automated Reasoning classical papers that
contain marvelous discussions of the broad methodology underlying different
approaches in the emerging field from the late 1950s to the early 1970s. The
papers by Beth, Kanger, Prawitz, Wang and the “Russian School” are of par-
ticular interest from my perspective, as we find in them serious attempts of
searching for humanly intelligible proofs and of getting the logical framework
right before building heuristics into the search. That was perhaps most clearly
formulated by Kanger in his (1963, p. 364): “The introduction of heuristics
may yield considerable simplifications of a given proof method, but I have the
impression that it would be wise to postpone the heuristics until we have a sat-
isfactory method to start with.” The work with AProS and automated proof
search support that view.
A. Purely logical arguments.

In the supplement to (Shanin, et al. 1965), one finds five propositional problems
and their proofs; AProS solves them with just the basic rules whereas in this
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paper quite complex derived rules are used. I discuss one example in order to
illustrate, how dramatically the search is impacted by “slight” reformulations
of the problem to be solved or, what amounts to the same thing, by introducing
specific heuristics. The problem in (Shanin, et al. 1965) is to derive

(¬(K → A) ∨ (K → B))

from the premises

(H ∨ ¬(A & K)) and (H → (¬A ∨B)).

The pure AProS search procedure uses 277 search steps to find a proof of length
77. If one uses in a first step a derived rule to replace positive occurrences of
(¬X ∨ ∆) or (X ∨ ¬∆) by (X → ∆), respectively, (∆ → X) then AProS
uses 273 search steps for a proof of length 87 (having made the replacement in
the first premise), 149 search steps for a proof of length 80 (having made the
replacement also in the second premise), and finally 9 search steps to find a
derivation of length 12 (having made the replacement also in the conclusion).

The Shanin-procedure introduces also instances of the law of excluded mid-
dle. In the above problem it does so for the left disjunct of the goal, i.e., it uses
the instance (¬(K → A)∨(K → A)). If one adds that instance as an additional
premise, then AProS takes 108 search steps to obtain a proof of 49 lines. If
the conclusion (¬(K → A)∨ (K → B)) is replaced by ((K → A) → (K → B))
then the instance of the law of excluded middle is not used when AProS obtains
a proof of length 29 in 23 search steps. If only the goal is reformulated as a
conditional, then the same proof is obtained with just 18 search steps.

The replacement step in the last proof amounts to using one of the available
rules from (Shanin, et al. 1965) heuristically: if the goal is of the form (¬X∨∆)
or (X ∨ ¬∆) then prove instead (X → ∆), respectively, (∆ → X). Such
a reformulation of a problem, or equivalently the strategic use of a derived
rule, can thus have a dramatic consequence on the search and the resulting
derivation. Let me discuss two additional examples and a motivated extension
of this heuristic step:
(1) Prove from the premise P ∨Q the disjunction

(P & Q) ∨ (P & ¬Q) ∨ (¬P & Q).

With its basic algorithm AProS uses 202 search steps to find a proof of length
58; however, if the goal is reformulated as the conditional

¬(P & Q) → ((P & ¬Q) ∨ (¬P & Q))

then 28 steps lead to a proof of length 18.
(2) Prove ((P ∨Q) → (P ∨R)) → (P ∨ (Q→ R)).
103 steps in the basic search lead to a proof of length 47. If one considers
instead

((P ∨Q) → (P ∨R)) → (¬P → (Q→ R))

AProS finds a proof of length 14 with 9 search steps.
These quasi-empirical observations can be used to articulate a heuristic for the
purely logical search: if one encounters a disjunction (X∨∆) as the goal, prove
instead the conditional (¬X → ∆) (and eliminate in the antecedent a double
negation, in case X happens to be a negation).
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B. Some elementary set theoretic arguments.
As I mentioned in sections 3.2 and 4.1, we have been extending the automated
search procedure to elementary set theory. Though our goal is different from
that of interactive theorem proving, there is a great deal of overlap: the hierar-
chical organization of the search can be viewed as reflecting and sharpening the
interaction of a user with a proof assistant. After all, we start out by analyz-
ing the structure of proofs, formalizing them, and then automating the proof
search, i.e., completely eliminating interaction. The case of using computers
as proof assistants is made in great detail in Harrison’s paper (2008). For the
case of automated proof search it is important, if not absolutely essential, that
the logical calculus of choice is natural deduction.41

Natural deduction has been used for proof search in set theory; an infor-
mative description is found, for example, in (Bledsoe 1983). Pastre’s (1976)
dissertation, deeply influenced by Bledsoe’s work, is mentioned in Bledsoe’s
paper. She has continued that early work, and her most recent paper (2007)
addresses a variety of elementary set theoretic problems. Similar work, but
in the context of the Theorema project, was done in (Windsteiger 2001) and
(Windsteiger 2003). However, the term natural deduction is used here only in
a very loose way: there is no search space that underlies the logical part and
guarantees completeness of the search procedure. Rather, the search is guided
in both logic and set theory by “natural heuristics” for the use of reduction
rules that are not connected to a systematic logical search and, in Pastre’s case,
do not even allow for any backtracking.

Let me consider a couple of examples of AProS proofs to show how the
logical search is extended in a most natural way by exploiting the meaning of
defined concepts by appropriate I- and E-rules. That has, in particular, the
“side-effect” of articulating in a mathematically sensible way, at which point in
the search definitions should be expanded. In each case, the reader should view
the proof strategically, i.e., closing the gap between premises and conclusion
by use of (inverted) I-rules and motivated E-rules.

Example 1: a ∈ b proves a ⊆
⋃

(b)
1. a ∈ b Premise

2. u ∈ a Assumption

3. (a ∈ b & u ∈ a) &I 1, 2

4. (∃z)(z ∈ b & u ∈ z) ∃I 3

5. u ∈
S

(b) Def.I (Union) 4

6. (u ∈ a → u ∈
S

(b)) → I 5

7. (∀x)(x ∈ a → x ∈
S

(b)) ∀I 6

8. a ⊆
S

(b) Def.I (Subset) 7

41There have been attempts of using proofs by resolution or other “machine-oriented”
procedures as starting points for obtaining natural deduction proofs; Peter Andrews and
Frank Pfenning, but also more recently Xiaorong Huang did interesting work in that direction.
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Example 2.1: a ⊆ b proves ℘(a) ⊆ ℘(b)
1. a ⊆ b Premise

2. u ∈ ℘(a) Assumption

3. v ∈ u Assumption

4. (∀x)(x ∈ a → x ∈ b) Def.E (Subset) 1

5. (v ∈ a → v ∈ b) ∀E 4

6. u ⊆ a Def.E (Power Set) 2

7. (∀x)(x ∈ u → x ∈ a) Def.E (Subset) 6

8. (v ∈ u → v ∈ a) ∀E 7

9. v ∈ a →E 8, 3

10. v ∈ b →E 5, 9

11. (v ∈ u → v ∈ b) → I 10

12. (∀x)(x ∈ u → x ∈ b) ∀I 11

13. u ⊆ b Def.I (Subset) 12

14. u ∈ ℘(b) Def.I (Power Set) 13

15. (u ∈ ℘(a) → u ∈ ℘(b)) → I 14

16. (∀x)(x ∈ ℘(a) → x ∈ ℘(b)) ∀I 15

17. ℘(a) ⊆ ℘(b) Def.I (Subset) 16

Example 2.2: This is example 2.1 with the additional premise (lemma):

(∀x)[(x ⊆ a & a ⊆ b) → x ⊆ b]

1. (∀x)[(x ⊆ a & a ⊆ b) → x ⊆ b] Premise

2. a ⊆ b Premise

3. u ∈ ℘(a) Assumption

4. (u ⊆ a & a ⊆ b) → u ⊆ b ∀E 1

5. u ⊆ a Def.E (Power Set) 3

6. (u ⊆ a & a ⊆ b) &I 5, 2

7. u ⊆ b →E 4, 6

8. u ∈ ℘(b) Def.I (Power Set) 7

9. (u ∈ ℘(a) → u ∈ ℘(b)) → I 8

10. (∀x)(x ∈ ℘(a) → x ∈ ℘(b)) ∀I 9

11. ℘(a) ⊆ ℘(b) Def.I (Subset) 10

C. Confluence?

The AProS project intends also to throw some empirical light on the cognitive
situation. With a number of collaborators I have been developing a web-based
introduction to logic, called Logic & Proofs; it focuses on the strategically
guided construction of proofs and includes dynamic tutoring via the search
algorithm AProS. The course is an expansive Learning Laboratory, as stu-
dents construct arguments in a virtual Proof Lab in which their every move is
recorded. It allows the investigation of questions like:
• How do students go about constructing arguments?

• How do particular pedagogical interventions affect their learning?

• How efficient do students get in finding proofs with little backtracking?
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• Does the skill of strategically looking for proofs transfer to informal consid-
erations?

The last question hints at a broader and long-term issue I am particularly
interested in, namely, to find out whether strategic-logical skills improve the
ability of students to understand complex mathematics.

The practical educational aspects are deeply connected to a theoretical issue
in cognitive science, namely, the stark opposition of “mental models” (Johnson-
Laird) and “mental proofs” (Rips). I do not see an unbridgeable gulf, but
consider the two views as complementary. Proofs as diagrams give rise to
mental models, and the dynamic features of proof construction I emphasized are
promoted by and reflect a broader structural, mathematical context; all of this
is helping us to bridge the gap between premises and conclusion. The crucial
question for me is: Can we make advances in isolating basic operations of the
mind involved in constructing mathematical proofs or, in other words, can we
develop a cognitive psychology of proofs that reflect logical and mathematical
understanding?

There is deeply relevant work on analogical reasoning, e.g., Dedre Gentner’s.
In the (2008) manuscript with J. Colhoun they write, “Analogical processes
are at the core of relational thinking, a crucial ability that, we suggest, is key
to human cognitive prowess and separates us from other intelligent creatures.
Our capacity for analogy ensures that every new encounter offers not only its
own kernel of knowledge, but a potentially vast set of insights resulting from
parallels past and future.” Performance in particular tasks is enhanced when
analogies, viewed as relational similarities, are strengthened by explicit com-
parisons and appropriate encodings. It seems that abstraction is here a crucial
mental operation and builds on such comparisons. The underlying theoretical
model of these investigations (structure mapping) is steeped in the language
of the mathematics that evolved in the 19th century, in particular, through
Dedekind’s work. It was Dedekind who introduced mappings between arbi-
trary systems; he asserted in the strongest terms that without this capacity of
the mind (to let a thing of one system correspond to a thing of another system)
no thinking is possible at all. Modern abstract, structural mathematics, one
can argue convincingly, makes analogies between different “structures” precise
via appropriate axiomatic formulations. — All of this, so the rich psychological
experimental work demonstrates, is important for learning. In the context of
more sophisticated mathematics, Kaminski e.a. hypothesized (and confirmed)
for example recently “that learning a single generic instantiation [i.e., a more
abstract example of a structure or concept; WS] . . . may result in better knowl-
edge transfer than learning multiple concrete, contextualized instantiations.”
(p. 454)

There is a most plausible confluence of mathematical and psychological re-
flection that would get us closer to a better characterization of the “capacity
of the human mind” that was discovered in Greek and rediscovered in 19th

century mathematics; according to Stein, as quoted already at the beginning
of Part 2, “what has been learned, when properly understood, constitutes one
of the greatest advances in philosophy . . . ”
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and A. Sorbi (eds), New computational paradigms — changing conceptions of
what is computable, Springer, pp. 139–152.
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